

# Demystifying Data Marts, Lakes, Hubs, and Warehouses & Their Role in Privacy-Aware Modern Architectures

**Technology Operations Track** 



### **Presenter: Mike Butler**

- Senior Director of Data Delivery at OneAmerica Financial
- Creator of VERY long session titles
- 20+ Year Career as a Technologist and Data Practitioner
- Prior Director of BI, CTO, CTIO, CDO, Consultant, Adjunct Professor
- BSU Alumni

#### Connect with me!

- in LinkedIn -> www.linkedin.com/in/mikebutlerin/
  - Blog -> <u>www.thedatahitchhiker.com</u>
    - Slides for this session will be made available



## **Key Questions Today**



Why are building data platform and programs so challenging?



What are some of key concepts and technologies in modern architectures?



How does privacy concern impact design and leadership decisions for modern architecture?



What should I be doing now to prepare for the AI onslaught?

## Why is building good data platforms so challenging?



Governance (Regulation, Privacy, Ethics)



Technology complexity

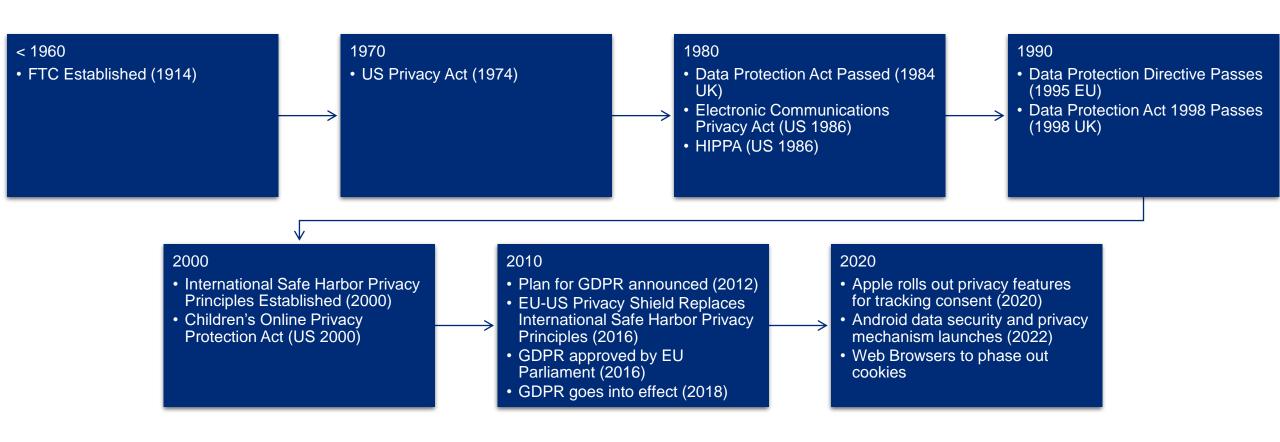


Monetization of Data



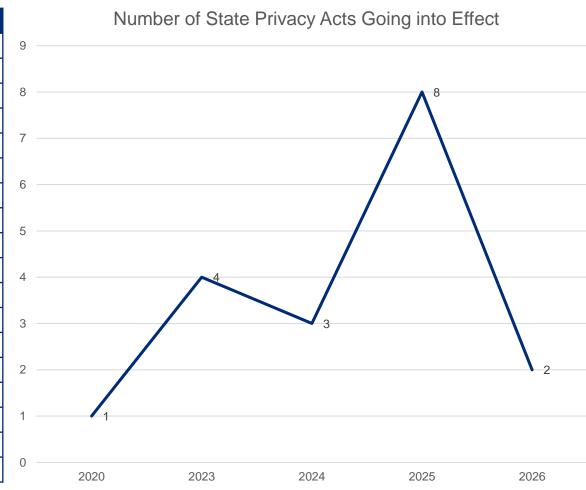
**Infinite Game** 




3 V's Volume, Variety, and Velocity



## **Data Privacy**




## **A Brief History of Data Privacy**



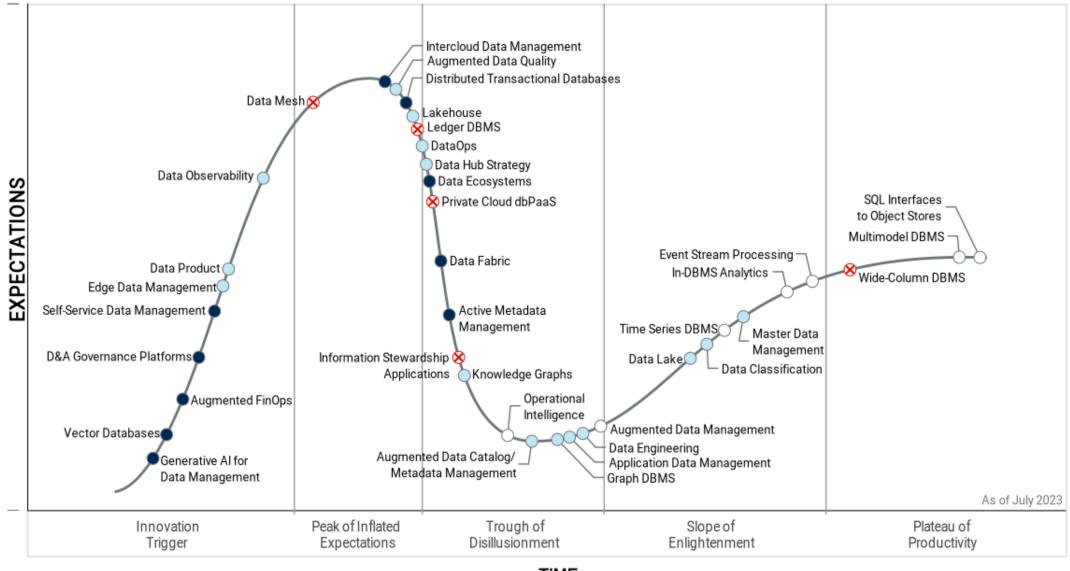
## **Data Privacy Landscape**

| STATE         | LAW SIGNED                            | EFFECTIVE FROM |
|---------------|---------------------------------------|----------------|
| CALIFORNIA    | CALIFORNIA CONSUMER PRIVACY ACT       | JAN. 1, 2020   |
| COLORADO      | COLORADO PRIVACY ACT                  | JUL. 1, 2023   |
| CONNECTICUT   | CONNECTICUT DATA PRIVACY ACT          | JUL. 1, 2023   |
| DELAWARE      | DELAWARE PERSONAL DATA PRIVACY ACT    | JAN. 1, 2025   |
| INDIANA       | INDIANA CONSUMER DATA PROTECTION ACT  | JAN. 1, 2026   |
| IOWA          | IOWA CONSUMER DATA PROTECTION ACT     | JAN. 1, 2025   |
| KENTUCKY      | KENTUCKY CONSUMER DATA PROTECTION ACT | JAN. 1, 2026   |
| MARYLAND      | MARYLAND ONLINE DATA PRIVACY ACT      | OCT. 1, 2025   |
| MINNESOTA     | MINNESOTA CONSUMER DATA PRIVACY ACT   | JUL. 31, 2025  |
| MONTANA       | MONTANA CONSUMER DATA PRIVACY ACT     | OCT. 1, 2024   |
| NEBRASKA      | NEBRASKA DATA PRIVACY ACT             | JAN. 1, 2025   |
| NEW HAMPSHIRE | NEW HAMPSHIRE PRIVACY ACT             | JAN. 1, 2025   |
| NEW JERSEY    | NEW JERSEY DATA PRIVACY ACT           | JAN. 15, 2025  |
| OREGON        | OREGON CONSUMER PRIVACY ACT           | JUL. 1, 2024   |
| TENNESSEE     | TENNESSEE INFORMATION PROTECTION ACT  | JUL. 1, 2025   |
| TEXAS         | TEXAS DATA PRIVACY & SECURITY ACT     | JUL. 1, 2024   |
| UTAH          | UTAH CONSUMER PRIVACY ACT             | DEC. 31, 2023  |
| VIRGINIA      | VIRGINIA CONSUMER DATA PROTECTION ACT | JAN. 1, 2023   |



## **Data Privacy Basic Principles**

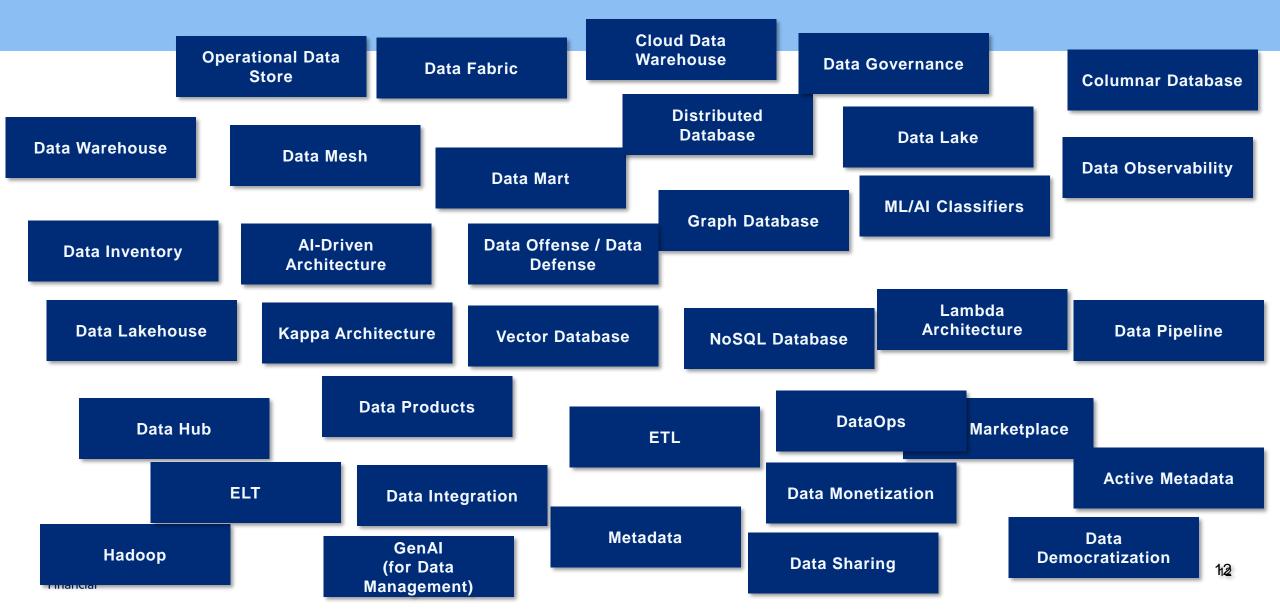
- 1. Right to Access: Consumers can view the data a business collects about them and see which third parties it is shared with.
- 2. Right to Rectification: Consumers can ask for corrections to any inaccurate or outdated personal data.
- 3. Right to Erasure: Consumers can request that their personal data be deleted.
- 4. Right to Restrict Processing: Consumers can limit how businesses process their data.
- 5. Right to Data Portability: Consumers can request their data in a commonly used format.
- 6. Right to Opt-Out: Consumers can choose to prevent their data from being sold to third parties.


Data Management



## A Brief History of Data Management




## **Gartner: The Hype Cycle for Data Management 2023**



TIME

Plateau will be reached: ○ <2 yrs. ○ 2-5 yrs. ● 5-10 yrs. △ >10 yrs. ⊗ Obsolete before plateau

## Data Landscape (Sample)



## **Data Landscape: Organizing the Chaos**

| Concepts         |                                |                        |  |  |
|------------------|--------------------------------|------------------------|--|--|
| Data Fabric      | Al-Driven<br>Architecture      | Data Integration       |  |  |
| Data Mesh        | DataOps                        | ETL                    |  |  |
| Data Hub         | Data Observability             | ELT                    |  |  |
| Data Governance  | Data Offense / Data<br>Defense | Lambda<br>Architecture |  |  |
| Data Products    | Data Monetization              | Kappa Architecture     |  |  |
| Data Marketplace | Data Pipeline                  | Active Metadata        |  |  |
| Data Sharing     | Data<br>Democratization        |                        |  |  |

| Tools                     |                                   |                         |
|---------------------------|-----------------------------------|-------------------------|
| Operational Data<br>Store | Vector Database                   | Data Inventory          |
| Data Warehouse            | NoSQL Database                    | ML/AI Classifier        |
| Data Lake                 | Graph Database                    | Columnar Database       |
| Data Lakehouse            | Distributed<br>Database           | Cloud Data<br>Warehouse |
| Data Mart                 | GenAl<br>(for Data<br>Management) | Metadata                |
| Knowledge Graph           | Hadoop                            |                         |
|                           |                                   |                         |

## **Exploring a Key Concepts for 2025**

#### **ETL vs ELT**

ETL: Data is extracted from sources, transformed, and then loaded into a data warehouse. (Traditional)

ELT: Data is extracted and loaded first, then transformed as needed. (Modern)

## Al-Driven Architecture

An architectural pattern that enables data for efficient usage in AI workloads. This may consist of pushing data from a warehouse into a lake (reverse pattern from today).

#### **Data Fabric**

An architecture that provides a unified data management framework, integrating various data sources, usually virtually, for seamless access and processing.

#### **Data Mesh**

A data mesh is a decentralized data architecture where domainspecific teams own and manage their data as products, using shared infrastructure and federated governance principles.

#### **Data Observability**

Data observability refers to the practice of monitoring, managing and maintaining data in a way that ensures its quality, availability and reliability across various processes, systems and pipelines within an organization.

#### **Active Metadata**

Active metadata is metadata that is continuously collected, processed, and used to automate data management tasks and improve data quality through intelligent, actionoriented systems.

#### **Data Marketplace**

A platform where data providers and consumers can rent, checkout, buy, sell, or exchange data assets, often with tools for data discovery and governance.

## Data Offense / Data Defense

Data Offense is an approach to strategy to use your data for custom focused uses (revenues).

Data Defense is an approach to data strategy that focuses on legal, financial, compliance, and IT concerns.

### **Exploring Key Tools for 2025**

#### **Data Mart**

A subset of a data warehouse focused on a specific business line or team.

Teradata, DB2, SQL Server, Oracle, Tableau, PowerBl

#### Cloud Data Warehouse

A scalable, managed service hosted in the cloud for storing and analyzing data with flexible and scalable compute.

Databricks, Snowflake, Azure Synapse, Amazon Redshift, Google Bigquery

#### **Data Warehouse**

A system used for reporting and data analysis, storing structured data from multiple sources.

Teradata, DB2, SQL Server, Oracle

#### **Vector Databases**

A database optimized for storing and querying high-dimensional vector data, often used in AI.

Dedicated: Pinecone, chroma, Milvus, Weaviate, LanceDB

Supported Search: PostgreSQL, redis, elasticsearch.

#### **Data Lake**

A centralized repository that stores raw data in its native format until needed.

Azure ADLS, Amazon S3, Google Cloud. Databricks

#### **ML/AI Classifiers**

An algorithm that categorizes data into predefined classes based on input features.

Microsoft Purview, Informatica, Apache Atlas, Python/R

#### **Data Lakehouse**

A hybrid architecture that combines the features of data lakes and data warehouses.

Databricks, Snowflake

#### **GenAl/LLMs**

Short for Generative AI, it refers to AI models that can generate new content, such as text, images, or music, based on learned patterns.

GPT-4, Snowflake Artic, Hugging Face, MLFlow

## Aligning Your Strategy



### 4 Key Considerations for Your Data Future

Look to implement data observability and modern ELT for transparency and accuracy.

2

Leverage hybridarchitectures of Data Lakes, Warehouses, Lake houses, and Marts with ELT for modern pipelines for offence and defense. 3

Loosely couple your data architecture to prepare for constantly changing privacy.

4

Consider your future use of AI and design your architecture to support the workloads with centralized controls for privacy.



Life Insurance Retirement Employee Benefits Long-Term Care

OneAmerica.com